| LJ MESSAGES

" Rinchen Lama

100% -

Can | have your guac recipe? Actually, can you

just make it?
Press for more

7 | CALENDAR

Gym or something
Invitation From Lilly Sevilla
j Today at 3:00 PM

7 100% ..

"Get me a Lyft to SFO"

‘can be there in 3 minutes.
ou want to request it?

Get a Ride

e

/&/’/

Current Location >
aver Be Like You (feat. Kai)
Flume — Skin

<< >>

Cancel Request
Awesome!

Stanford CS193p

Developing Applications for iOS
Winter 2017

100% -

7 100% -

Boulevard
American (New)

levard
ican (New) - 1.8 mi

b

Reservations Directions
§ OpenTable 11 min drive

CS193p
Winter 2017

Today

® Demo: The FaceViewController MVCs Model

Its a facial expression

@ Gestures
Getting multitouch input from users

@ Demo: Modifying the facial expression
Panning, pinching, tapping

@ Multiple MVCs

Tab Bar, Navigation and Split View Controller

Demo

® The FaceViewController MVCs Model

Its a facial expression

Gestures

@ We've seen how to draw in a UIView, how do we get touches?

We can get notified of the raw touch events (touch down, moved, up, etc.)
Or we can react to certain, predefined “"gestures.” The latter is the way to go!

® Gestures are recognized by instances of UIGestureRecognizer
The base class is “abstract” We only actually use concrete subclasses to recognize.

@ There are two sides to using a gesture recognizer

1. Adding a gesture recognizer to a UIView (asking the UIView to “recognize” that gesture)
2. Providing a method to “handle” that gesture (not necessarily handled by the UIView)

@ Usually the first is done by a Conftroller
Though occasionally a UIView will do this itself if the gesture is integral to its existence

@ The second is provided either by the UIView or a Controller

Depending on the situation. We'll see an example of both in our demo.

Gestures

@ Adding a gesture recognizer to a UIView

Imagine we wanted a UIView in our Controllers View to recognize a “pan” gesture.
We can configure it to do so in the property observer for the outlet to that UIView ..
@IBOutlet weak var pannableView: UIView {
didSet {
let panGestureRecognizer = UIPanGestureRecognizer
target: self, action: #selector(ViewController.pan(recognizer:))

)

pannableView.addGestureRecognizer(panGestureRecognizer)

£

CS193p
Winter 2017

Gestures

@ Adding a gesture recognizer to a UIView

Imagine we wanted a UIView in our Controllers View to recognize a “pan” gesture.
We can configure it to do so in the property observer for the outlet to that UIView ..
@IBOutlet weak var pannableView: UIView 1
didSet {
let panGestureRecognizer = UIPanGestureRecognizer
target: self, action: #selector(ViewController.pan(recognizer:))

)

pannableView.addGestureRecognizer(panGestureRecognizer)

¥
The property observers didSet code gets called when iOS hooks up this outlet at runtime

£

CS193p
Winter 2017

Gestures

@ Adding a gesture recognizer to a UIView

Imagine we wanted a UIView in our Controllers View to recognize a “pan” gesture.
We can configure it to do so in the property observer for the outlet to that UIView ..
@IBOutlet weak var pannableView: UIView 1
didSet {
let panGestureRecognizer = UIPanGestureRecognizer(
target: self, action: #selector(ViewController.pan(recognizer:))

)

pannableView.addGestureRecognizer(panGestureRecognizer)

¥

The property observers didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)

Gestures

@ Adding a gesture recognizer to a UIView

Imagine we wanted a UIView in our Controllers View to recognize a “pan” gesture.
We can configure it to do so in the property observer for the outlet to that UIView ..

@IBOutlet weak var pannableView: UIView 1

didSet 1
let panGestureRecognizer = UIPanGestureRecognizer(
target: self, action: #selector(ViewController.pan(recognizer:))

)

pannableView.addGestureRecognizer(panGestureRecognizer)

¥

The property observers didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (here its the Controller itself)

Gestures

@ Adding a gesture recognizer to a UIView

Imagine we wanted a UIView in our Controllers View to recognize a “pan” gesture.
We can configure it to do so in the property observer for the outlet to that UIView ..
@IBOutlet weak var pannableView: UIView 1
didSet {
let panGestureRecognizer = UIPanGestureRecognizer(
target: self, action: #selector(ViewController.pan(recognizer:))

)

pannableView.addGestureRecognizer(panGestureRecognizer)

¥

The property observers didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (here its the Controller itself)
The action is the method invoked on recognition (that methods argument? the recognizer)

Gestures

@ Adding a gesture recognizer to a UIView

Imagine we wanted a UIView in our Controllers View to recognize a “pan” gesture.
We can configure it to do so in the property observer for the outlet to that UIView ..
@IBOutlet weak var pannableView: UIView {
didSet {
let panGestureRecognizer = UIPanGestureRecognizer(
target: self, action: #selector(ViewController.pan(recognizer:))

)

pannableView.addGestureRecognizer(panGestureRecognizer)

}

The property observers didSet code gets called when iOS hooks up this outlet at runtime
Here we are creating an instance of a concrete subclass of UIGestureRecognizer (for pans)
The target gets notified when the gesture is recognized (here its the Controller itself)
The action is the method invoked on recognition (that methods argument? the recognizer)
Here we ask the UIView to actually start trying to recognize this gesture in its bounds
Lets talk about how we implement the handler ...

£

Gestures

@ A handler for a gesture needs gesture-specific information
So each concrete subclass provides special methods for handling that type of gesture

@ For example, UIPanGestureRecognizer provides 3 methods

func translation(in: UIView?) -> CGPoint // cumulative since start of recognition

func velocity(in: UIView?) —> CGPoint // how fast the finger is moving (points/s)
func setTranslation(CGPoint, in: UIView?)

This last one is interesting because it allows you to reset the translation so far

By resetting the translation to zero all the time, you end up getting “incremental” translation

® The abstract superclass also provides state information

var state: UIGestureRecognizerState { get }

This sits around in .possible unftil recognition starts

For a continuous gesture (e.g. pan), it moves from .began thru repeated .changed to .ended
For a discrete (e.g. a swipe) gesture, it goes straight to .ended or .recognized.

It can go to .failed or .cancelled too, so watch out for those!

Gestures

@ So, given this information, what would the pan handler look like?

func pan(recognizer: UIPanGestureRecognizer) A{
switch recognizer.state {

case .changed: fallthrough

case .ended:
let translation = recognizer.translation(in: pannableView)
// update anything that depends on the pan gesture using translation.x and .y
recognizer.setTranslation(CGPoint.zero, in: pannableView)

default: break

h

Remember that the action was pan(recognizer:)

£

CS193p
Winter 2017

Gestures

@ So, given this information, what would the pan handler look like?

func pan(recognizer: UIPanGestureRecognizer) A
switch recognizer.state {

case .changed: fallthrough

case .ended:
let translation = recognizer.translation(in: pannableView)
// update anything that depends on the pan gesture using translation.x and .y
recognizer.setTranslation(CGPoint.zero, in: pannableView)

default: break

h

Remember that the action was pan(recognizer:)
We are only going to do anything when the finger moves or lifts up off the devices surface

Gestures

@ So, given this information, what would the pan handler look like?

func pan(recognizer: UIPanGestureRecognizer) A{

switch recognizer.state {
case .changed: fallthrough

case .ended:
let translation = recognizer.translation(in: pannableView)

// update anything that depends on the pan gesture using translation.x and .y
recognizer.setTranslation(CGPoint.zero, in: pannableView)

default: break

h

Remember that the action was pan(recognizer:)
We are only going to do anything when the finger moves or lifts up off the devices surface

fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)

Gestures

@ So, given this information, what would the pan handler look like?

func pan(recognizer: UIPanGestureRecognizer) A
switch recognizer.state {

case .changed: fallthrough

case .ended:
let translation = recognizer.translation(in: pannableView)
// update anything that depends on the pan gesture using translation.x and .y
recognizer.setTranslation(CGPoint.zero, in: pannableView)

default: break

h

Remember that the action was pan(recognizer:)

We are only going to do anything when the finger moves or lifts up off the devices surface
fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)
Here we get the location of the pan in the pannableViews coordinate system

Gestures

@ So, given this information, what would the pan handler look like?

func pan(recognizer: UIPanGestureRecognizer) A
switch recognizer.state {

case .changed: fallthrough

case .ended:
let translation = recognizer.translation(in: pannableView)
// update anything that depends on the pan gesture using translation.x and .y
recognizer.setTranslation(CGPoint.zero, in: pannableView)

default: break

h

Remember that the action was pan(recognizer:)

We are only going to do anything when the finger moves or lifts up off the devices surface
fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)
Here we get the location of the pan in the pannableViews coordinate system

Now we do whatever we want with that information

Gestures

@ So, given this information, what would the pan handler look like?

func pan(recognizer: UIPanGestureRecognizer) A
switch recognizer.state {

case .changed: fallthrough

case .ended:
let translation = recognizer.translation(in: pannableView)
// update anything that depends on the pan gesture using translation.x and .y
recognizer.setTranslation(CGPoint.zero, in: pannableView)

default: break

h

Remember that the action was pan(recognizer:)

We are only going to do anything when the finger moves or lifts up off the devices surface
fallthrough is “execute the code for the next case down” (case .changed,.ended: ok too)
Here we get the location of the pan in the pannableViews coordinate system

Now we do whatever we want with that information

By resetting the translation, the next one we get will be incremental movement

Gestures

UIPinchGestureRecognizer
var scale: CGFloat // not read-only (can reset)
var velocity: CGFloat { get } // scale factor per second

UIRotationGestureRecognizer
var rotation: CGFloat // not read-only (can reset); in radians

var velocity: CGFloat { get } // radians per second

UISwipeGestureRecognizer

Set up the direction and number of fingers you want

var direction: UISwipeGestureRecoginzerDirection // which swipe directions you want
var numberOfTouchesRequired: Int // finger count

UITapGestureRecognizer

Set up the number of taps and fingers you want

var numberOfTapsRequired: Int // single tap, double tap, etc.
var numberOfTouchesRequired: Int // finger count

Demo

® Gestures Demo

Add a gesture recognizer (pinch) to zoom in and out (control the FaceViews own scale)
Add gesture recognizers (pan & tap) to control the expression (Model) in the Controller

MVCs working together

Q.
o
o
—
V)
O

Winter 2017

Multiple MVCs

@ Time to build more powerful applications
To do this, we must combine MVCs ...

iOS provides some Controllers ..
whose View is “other MVCs” *

* you could build your own Controller that does this,

but were not going to cover that in this course

CS193p
Winter 2017

Multiple MVCs

@ Time to build more powerful applications
To do this, we must combine MVCs ...

iOS provides some Controllers
whose View is “other MVCs”
Examples:
UITabBarController
UISplitViewController
UINavigationController

CS193p
Winter 2017

UITabBarController

® It lets the user choose between different MVCs ...

Dashboard

= A “"Dashboard” MVC

Dashboard Empty | The icon, title and even a "badge value” on these
Vi g gekf hshissend s _ is determined by the MVCs themselves via their property:
var tabBarItem: UITabBarItem!

But usually you just set them in your storyboard.

UITabBarController

® It lets the user choose between different MVCs ...

Dashboard

= A “Health Data” MVC

7

. 4 utrition
“‘ e

\

lj .“

Sleep
Dashboard Empty If there are too many tabs to fit here,
You can add dashboard items

from Health Data. | W the UITabBarController will automatically
* present a UI for the user to manage the overflow!

Vitals

3

UITabBarController

® It lets the user choose between different MVCs ...

Carrier = p Carrier Carrier =

Dashboard Q Search Sources

Body Measurements

; As apps request permission to update your data, they will be
Fitness added to the list.

Me

Nutrition

Sleep

Dashboard Empty

You can add dashboard items
from Health Data.

Vitals

B & © @ ~ @ ., o

Dashboard Health Data Sources Medical ID Dashboard Health Data

Dashboard Health Data Sources Medical ID

UITabBarController

® It lets the user choose between different MVCs ...

Carrier = Carrier Carrier = Carrier =

Dashboard Q Search Sources

Body Measurements

; As apps request permission to update your data, they will be
Fitness added to the list.

Me

Nutrition

Medical ID

Results A Medical ID provides medical information about

you that may be important in an emergency, like
Sleep allergies and medical conditions.

Dashboard Empty

You can add dashboard items
from Health Data.

Vitals The Medical ID can be accessed from the
emergency dialer without unlocking your phone.

Create Medical ID

o] I v D R v &R

Dashboard Health Data Sources Dashboard Health Data Sources Medical ID Dashboard Health Data Sources Medical ID

Dashboard Health Data Sources Medical ID

UISplitViewController

@ Puts two MVCs side-by-side ...

Calculator Graph
MVC

Master Detail

UISplitViewController

@ Puts two MVCs side-by-side ...

chchchchchch

A
Calculator Graph
MVC

Master Detail

UISplitViewController

@ Puts two MVCs side-by-side ...

A A
Calculator Calculator Graph
\\e MVC

Master Detail

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

Settings

This top area is drawn by the =
UINavigationController

3 General
But the contents of the top ' ﬁ —_— = An "All Settings” MVC
area (like the title or any |
buttons on the right) are | @ Cloud
determined by the MVC | & Maps
currently showing (in this case, il
the "All Settings” MVC) &) Photos & Camera
. @& Game Center
Each MVC communicates these
contents via its D wier
UIViewControllers €3 Facebook

navigationItem property j & Flaa ,
,m\'xmoo e ———— —— |

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

s A “General Settings” MVC

Its possible to add MVC-
specific buttons here too via
the UIViewControllers
toolbarItems property

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

Notice this “back” button has %
appeared. This is placed here '
automatically by the
UINavigationController.

s A “General Settings” MVC

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

s AN “Accessibility” MVC

" Bold Text
’; Button Shapes
Increase Contrast

' Reduce Motion

- On/Off Labels

. Subtitles & Captioning

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

Apps that support Dynamic Type will

f adjust to your preferred reading size B et i A b Lal"gel" Tex 1'” MVC
' elow. >

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

UINavigationController
@ Pushes and pops MVCs off of a stack (like a stack of cards) ...

UINavigationController

I want more features, but it doesnt make S
sense to put them all in one MVC! A

CS193p
Winter 2017

UINavigationController

So I create a new MVC to ~
encapsulate that functionality. 2

CS193p
Winter 2017

UINavigationController

We can use a UlNavigationControltler
T0 [eT Them share The screen

A
CS193p
Winter 2017

UINavigationController

The UINavigationController is a

UINavigationController

CS193p
Winter 2017

UINavigationController

UINavigationController

But ifs special because we can set ifs
rootViewController ouflet To another MVC ..

CS193p
Winter 2017

UINavigationController

and it will embed that MVCs
R 5 View Ii@[la ITS own View.

CS193p
Winter 2017

UINavigationController

Then a UI element in this View (e.g. a UIButton)ﬁcan seguﬂéﬁ"—;r-b the other %
MVC and its View will now appear in the UINavigationCont rq}l'er instead.

CS193p
Winter 2017

UINavigationController

UINavigationController

CS193p
Winter 2017

UINavigationController

UINavigationController

Notice this Back button
automatically appears.

CS193p
Winter 2017

UINavigationController

UINavigationController

go back to the first MVC.

CS193p
Winter 2017

UINavigationController

Notice that after we back out of an MVC,
it disappears (it is deallocated from the heap, in fact).

S

CS193p
Winter 2017

Accessing the sub-MVCs

@ You can get the sub-MVCs via the viewControllers property
var viewControllers: [UIViewController]? { get set } // can be optional (e.g. for tab bar)
// for a tab bar, they are in order, left to right, in the array
// for a split view, [0] is the master and [1] is the detail
// for a navigation controller, [@] is the root and the rest are in order on the stack
// even though this is settable, usually setting happens via storyboard, segues, or other
// for example, navigation controllers push and pop methods

@ But how do you get ahold of the SVC, TBC or NC itself?

Every UIViewController knows the Split View, Tab Bar or Navigation Controller it is currently in
These are UIViewController properties ..

var tabBarController: UITabBarController? { get }

var splitViewController: UISplitViewController? { get }

var navigationController: UINavigationController? { get }

So, for example, to get the detail (right side) of the split view controller you are in ...

if let detail: UIViewController? = splitViewController?.viewControllers([1] { .. } %

Wiring up MVCs

@ How do we wire all this stuff up?

Let's say we have a Calculator MVC and a Calculator Graphing MVC
How do we hook them up to be the two sides of a Split View?

Just drag out a compoate vew corroler (and delete all the extra VCs it brings with it)

manages left and right view controll...

Then ctrl-drag from the UISplitViewController fo the master and defail MVCs ..

Wiring up MVCs

Wiring up MVCs

Manual Segue
show
show detail
present modally
SoHt Wew Controlier popover presentation
= ——————""| custom
Relationship Segue
master view controller
detail view controlier
Non-Adaptive Manual Segue
push (deprecated)
modal (deprecated)

Calculstior Graph View Controfer

13

Wiring up MVCs

Spiit View Comsrolior

Cakulstor Graph View Controtier

Wiring up MVCs

Spiit View Consrolor

Manual Segue
show
show detall
present modally
popover presentation
oustom

Relationship Segue

master view controller

detall view controller
Non-Adaptive Manual Segue

push (deprecated)

modal (deprecated)

Wiring up MVCs

Cacuator

Graph View Controlier

Wiring up MVCs

@ But split view can only do its thing properly on iPad/iPhone+

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way fo wrap a Navigation Controller around an MVC is with Editor->Embed In

=. 8 Product Debug Source Control Window Help

Align
Arrange

~ Resolve Auto Layout Issues
Pin

Size to Fit Content £ Navigation Controller

Localization Locking Tab Bar Controller

Th‘is MVC is selected

Canvas
Size Class

Show Document Outline
Reveal in Document Outline

v/ Automatically Refresh Views
Refresh All Views

Wiring up MVCs

@ But split view can only do its thing properly on iPad/iPhone+

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way fo wrap a Navigation Controller around an MVC is with Editor->Embed In

aite Editor Product Debug Source Control Window Help

Now that MVC is part of
the View of this UINavigationController™
(its the rootViewController) °

And the UINav1gat10nCont roller is par’r of
. the View of this UISplitViewController
(its.the Master, viewControllers[0])

Wiring up MVCs

@ But split view can only do its thing properly on iPad/iPhone+

So we need to put some Navigation Controllers in there so it will work on iPhone
The Navigation Controllers will be good for iPad too because the MVCs will get titles
The simplest way fo wrap a Navigation Controller around an MVC is with Editor->Embed In

aite Editor Product Debug Source Control Window Help

You can put this MVC in a UINavigationController too
(to give it a title, for example),
but be careful because the Detail of the UISplitViewCont roller
would now be a UINavigationController . -
(so oud have 1o get the UINavigationCont rollers rootV1ewCont roller

if you wanted' to talk to the graphing MVC inside)

Segues

@ We've built up our Controllers of Controllers, now what?

Now we need to make it so that one MVC can cause another to appear
We call that a “segue”

@ Kinds of segues (they will adapt to their environment)
Show Segue (will push in a Navigation Controller, else Modal)
Show Detail Segue (will show in Detail of a Split View or will push in a Navigation Controller)
Modal Segue (take over the entire screen while the MVC is up)
Popover Segue (make the MVC appear in a little popover window)

@ Seques always create a of an MVC
This is important to understand
Even the Detail of a Split View will get replaced with a new instance of that MVC
When you segue in a Navigation Controller it will not seque to some old instance, it‘ll be new
Going "back” in a Navigation Controller is NOT a segue though (so no new instance there)

Segues

@ How do we make these segues happen?

Ctrl-drag in a storyboard from an instigator (like a button) to the MVC to segue to
Can be done in code as well

Finished running Calculator on iPhone 6 Plus O 0O

7 Calculator) g iPhone 6 Plus
@ T B @

[& calculator » [Calculator) [Main.storyboard) §§ Main.storyboard (Base) » [B] Calculator Scene Show detail segue to Calculator Graph View Controller

Navigation Controller E w B

Calculator

Split View Controller

Calculator Graph View Controller

3

D 0B

controller that manages a table view.

Tab Bar Controller - A controller
that manages a set of view controllers
that represent tab bar items.

.Ctrl-drag from the button

Page View Controller - Presents a
seguence of view controllers as

that causes the graph to appear “=

GLKit View Controller - A
controller that manages a GLKit view.

1'0 t he MVC (0) F t he g ra P h.) St

available in Interface Builder.

Collection View Controller - A
controller that manages a collection
view.

Calculator Graph View Controller AVKit Player View Controller - A
view controller that manages a
MMinuine. binas

= ot B B8 @

7 Calculator) g iPhone 6 Plus Finished running Calculator on iPhone 6 Plus

[calculator > 7] Calculator) [Main.storyboard > i Main.storyboard (Base) Calculator Scene Show detail segue to Calculator Graph View Controller

Navigation Controlier

Calculator

Split View Controller

Select the kind of \segue you want

Calculator Graph View Controller Action Seg ue
show

show detail
present modally
e popover presentation ' _ puoem

show detall controller that manages a table view.
present modally
popover presentation custom
custom T Tab Bar Controller - A
Non-Adaptive Action Segue " . e that manages a set of view controllers

P — Non-Ada ptive Action Seg ue that represent tab bar toms.
modal (deprecated)

Split View Controller - A

push (deprecated)

manages left and right view controll...

modal (deprecated) = Pago view Contraller - resois o

sequence of view controliers a:
pages.

GLKit View Controller - A
controller that manages a GLKit

Object - Provices a template for
s and controllers not direct
avalable in Interface Builder.

Collection View Controller - A
troller that manages a collection
view.

AVKit Player View Controller - A
Vi ontroller that manages a

MMinuine. mbinas

2 o] tal E]

O3 O

DemEeio
| storyboard Segue

7 Calculator) g iPhone 6 Plus Finished running Calculator on iPhone 6 Plus

[& calculator » [Calculator > [Main.storyboard) § Main.storyboard (Base) » [B] Calculator Scene Show detail segue to Calculator Graph View Controller

Identifier

Calculator Segue Show Detail (e.g. Replace)

Calculator

O ®
. Storyboard Segue

Identifier

~

Now click on the’segue

Spit View Controller ; Segue Show Detail (e.q. Replace) k%

ibutes Inspector

Calculator Graph View Controller

3

D 0B

controller that manages a table view.

Tab Bar Controller - A controller
that manages a set of view controllers
that represent tab bar items.

Split View Controller - A
composite view controller that
manages left and right view controll...

Page View Controller - Presents a
seguence of view controllers as
pages.

GLKit View Controller - A
controller that manages a GLKit view.

Object - Provices a template for
objects and controllers not directly
avalable in Interface Builder.

Collection View Controller - A
controller that manages a collection
view.

AVKit Player View Controller - A
i ller that manages a

= ot B B8 @

7 Calculator) i iPhone 6 Plus Finished running Calculator on iPhone 6 Plus O = O

DoEY¢E e

[& calculator » [Calculator > [Main.storyboard) § Main.storyboard (Base) » [B] Calculator Scene Show detail segue to Calculator Graph View Controller
| Storyboard Segue

Identifier Show Graph

Calculator anils c 4 Seque Show Detail (e.q. Replace) [

Give the segue a unique identifier
It should describe what the segue 06 @ O

Storyboard Segue
Identifier Show Graph

Spit View Gontroller ; Segue Show Detail (e.q. Replace)

Calculator Graph View Controller

3

D 0B

controller that manages a table view.

Tab Bar Controller - A controller
that manages a set of view controllers
that represent tab bar items.

Split View Controller - A
composite view controller that
manages left and right view controll...

Page View Controller - Presents a
seguence of view controllers as
pages.

GLKit View Controller - A
controller that manages a GLKit view.

Object - Provices a template for
objects and controllers not directly
avalable in Interface Builder.

Collection View Controller - A
controller that manages a collection
view.

AVKit Player View Controller - A
view controller that manages a

MMinuine. nbinas

= tof to B3| B2

Segues
@ What's that identifier all about?

You would need it to invoke this seqgue from code using this UIViewController method

func performSeque(withIdentifier: String, sender: Any?)

(but we almost never do this because we set usually ctrl-drag from the instigator)

The sender can be whatever you want (you'll see where it shows up in a moment)

You can ctrl-drag from the Controller itself to another Controller if youre segueing via code

(because in that case, you'll be specifying the sender above)

@ More important use of the identifier: preparing for a seque
When a segue happens, the View Controller containing the instigator gets a chance
to prepare the destination View Controller to be segued fo
Usually this means setting up the segued-to MVCs Model and display characteristics
Remember that the MVC segued to is always a fresh instance (never a reused one)

Preparing for a Seque

@ The method that is called in the instigators Controller

func prepare(for seque: UIStoryboardSegue, sender: Any?) A1
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
VC.propertyl = .
vc.callMethodToSetItUp(..)
}
default: break

£

CS193p
Winter 2017

Preparing for a Seque

@ The method that is called in the instigators Controller

func prepare(for seque: UIStoryboardSegue, sender: Any?) Ao
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
VC.propertyl = .
vc.callMethodToSetItUp(..)
}
default: break

¥

The segue passed in contains important information about this segue:
1. the identifier from the storyboard

2. the Controller of the MVC you are sequeing to (which was just created for you)

Preparing for a Seque

@ The method that is called in the instigators Controller

func prepare(for segue: UIStoryboardSegue, sender: Any?) 1
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
VC.propertyl = .
vc.callMethodToSetItUp(..)
}
default: break

¥

The sender is either the instigating object from a storyboard (e.g. a UIButton)
or the sender you provided (see last slide) if you invoked the segue manually in code

£

Preparing for a Segue

@ The method that is called in the instigators Controller

func prepare(for segue: UIStoryboardSegue, sender: Any?) A1
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
VC.propertyl = .
vc.callMethodToSetItUp(..)
}
default: break

¥

Here is the identifier from the storyboard (it can be nil, so be sure to check for that case)

Your Controller might support preparing for lots of different seques from different instigators
so this identifier is how you'll know which one you're preparing for

Preparing for a Seque

@ The method that is called in the instigators Controller

func prepare(for segue: UIStoryboardSegue, sender: Any?) A1
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
VC.propertyl = .
vc.callMethodToSetItUp(..)
}
default: break

¥

For this example, we'll assume we entered "Show Graph” in the Attributes Inspector
when we had the segue selected in the storyboard

Preparing for a Seque

@ The method that is called in the instigators Controller

func prepare(for segue: UIStoryboardSegue, sender: Any?) A1
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
VC.propertyl = .
vc.callMethodToSetItUp(..)
}
default: break

¥

Here we are looking at the Controller of the MVC wee segueing to
It is Any so we must cast it to the Controller we (should) know it to be

Preparing for a Seque

@ The method that is called in the instigators Controller

func prepare(for segue: UIStoryboardSegue, sender: Any?) A1
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
VC.propertyl = .
vc.callMethodToSetItUp(..)
}
default: break

¥

This is where the actual preparation of the segued-to MVC occurs
Hopefully the MVC has a clear public API that it wants you to use to prepare it
Once the MVC is prepared, it should run on its own power (only using delegation to talk back) %

Preparing for a Segue

@ The method that is called in the instigators Controller

func prepare(for segue: UIStoryboardSegue, sender: Any?) A1
if let identifier = segue.identifier {
switch identifier {
case “Show Graph”:
if let vc = seque.destinationViewController as? GraphController {
vCc.propertyl = ..
vc.callMethodToSetItUp(..)
5
default: break

¥

It is crucial fo understand that this preparation is happening BEFORE outlets get set!
It is a very common bug to prepare an MVC thinking its outlefs are set.

S

CS193p
Winter 2017

Preventing Segues

@ You can prevent a segue from happening too
Just return false from this method your UIViewController ...
func shouldPerformSegue(withIdentifier identifier: String?, sender: Any?) —> Bool
The identifier is the one in the storyboard.
The sender is the instigating object (e.g. the button that is causing the segue).

